A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

Carstensen C., Reddy B., Schedensack M.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the (Formula presented.) error of the primal variable is bounded by the error of the (Formula presented.) best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.

Details zur Publikation

FachzeitschriftNumerische Mathematik
Jahrgang / Bandnr. / Volume133
Ausgabe / Heftnr. / Issue1
Seitenbereich37-66
StatusVeröffentlicht
Veröffentlichungsjahr2016
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s00211-015-0738-1
Stichwörter65N30; 76M10

Autor*innen der Universität Münster

Schedensack, Mira
Juniorprofessur für Angewandte Mathematik (Prof. Schedensack)