Compression versus Accuracy: A Hierarchy of Lifted ModelsOpen Access

Speller, Jan; Luttermann, Malte; Gehrke, Marcel; Braun, Tanya

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Probabilistic graphical models that encode indistinguishable objects and relations among them use first-order logic constructs to compress a propositional factorised model for more efficient (lifted) inference. To obtain a lifted representation, the state-of-the-art algorithm Advanced Colour Passing (ACP) groups factors that represent matching distributions. In an approximate version using ε as a hyperparameter, factors are grouped that differ by a factor of at most (1 ± ε). However, finding a suitable ε is not obvious and may need a lot of exploration, possibly requiring many ACP runs with different ε values. Additionally, varying ε can yield wildly different models, leading to decreased interpretability. Therefore, this paper presents a hierarchical approach to lifted model construction that is hyperparameter-free. It efficiently computes a hierarchy of ε values that ensures a hierarchy of models, meaning that once factors are grouped together given some ε, these factors will be grouped together for larger ε as well. The hierarchy of ε values also leads to a hierarchy of error bounds. This allows for explicitly weighing compression versus accuracy when choosing specific ε values to run ACP with and enables interpretability between the different models.

Details zur Publikation

Herausgeber*innenLynce, I.; et al.
BuchtitelECAI-25 Proceedings of the 28th European Conference on Artificial Intelligence (Band Volume 413)
Seitenbereich5051-5058
VerlagIOS Press
ErscheinungsortOnline
StatusVeröffentlicht
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
KonferenzECAI-25 28th European Conference on Artificial Intelligence, 25.10.2025-30.10.2025, Bologna, Italien
ISBN978-1-64368-631-8
DOI10.3233/FAIA251420
Link zum Volltexthttps://ebooks.iospress.nl/doi/10.3233/FAIA251420
Stichwörterlifted model construction; colour passing; hierarchical learning

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)
Speller, Jan
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)

Projekte, aus denen die Publikation entstanden ist

Laufzeit: 15.03.2024 - 31.12.2026
Gefördert durch: MKW - Förderlinie „Künstliche Intelligenz/Maschinelles Lernen“ - KI-Starter
Art des Projekts: Gefördertes Einzelprojekt

Vorträge zur Publikation

Compression versus Accuracy: A Hierarchy of Lifted Models
Speller, Jan; Luttermann, Malte; Gehrke, Marcel; Braun, Tanya (29.10.2025)
28th European Conference on Artificial Intelligence (ECAI 2025), Bologna
Art des Vortrags: wissenschaftlicher Vortrag