Multi-fidelity Learning of Reduced Order Models for Parabolic PDE Constrained Optimization

Klein, Benedikt; Ohlberger, Mario

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

This article builds on the recently proposed RB-ML-ROM approach for parameterized parabolic PDEs and proposes a novel hierarchical Trust Region algorithm for solving parabolic PDE constrained optimization problems. Instead of using a traditional offline/online splitting approach for model order reduction, we adopt an active learning or enrichment strategy to construct a multi-fidelity hierarchy of reduced order models on-the-fly during the outer optimization loop. The multi-fidelity surrogate model consists of a full order model, a reduced order model and a machine learning model. The proposed hierarchical framework adaptively updates its hierarchy when querying parameters, utilizing a rigorous a posteriori error estimator in an error aware trust region framework. Numerical experiments are given to demonstrate the efficiency of the proposed approach.

Details zur Publikation

Name des RepositoriumsarXiv
Artikelnummer2503.21252
Statuseingereicht / in Begutachtung
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
DOI10.48550/arXiv.2503.21252
Link zum Volltext https://doi.org/10.48550/arXiv.2503.21252
StichwörterReduced order models; multi-fidelity learning; parabolic PDE constrained optimization; trust region algorithm

Autor*innen der Universität Münster

Klein, Benedikt Simon
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)