“UDE DIATOMS in the Wild 2024”: a new image dataset of freshwater diatoms for training deep learning modelsOpen Access

Aishwarya, Venkataramanan; Michael, Kloster; Andrea, Burfeid-Castellanos; Mimoza, Dani; Ntambwe A S, Mayombo; Danijela, Vidakovic; Daniel, Langenkämper; Mingkun, Tan; Cedric, Pradalier; Tim, Nattkemper; Martin, Laviale; Bánk, Beszteri.

Forschungsartikel (Zeitschrift) | Peer reviewed

Details zur Publikation

FachzeitschriftGigaScience
Jahrgang / Bandnr. / Volume13
StatusVeröffentlicht
Veröffentlichungsjahr2024
DOI10.1093/gigascience/giae087
Link zum Volltexthttps://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giae087/7912108?login=true
Stichwörterdiatom, light microscopy, digital imaging, slide scanning, aquatic ecology, deep learning, out-of-distribution detection, semi-supervised learning

Autor*innen der Universität Münster

Tan, Mingkun
Professur für Geoinformatics for Sustainable Development (Prof. Risse)