Meyer, David; Niebel, Lukas; Seis, Christian
Forschungsartikel (Zeitschrift) | Peer reviewedWe construct steady non-spherical bubbles and drops, which are traveling wave solutions to the axisymmetric two-phase Euler equations with surface tension, whose inner phase is a bounded connected domain. The solutions have a uniform vorticity distribution in this inner phase and they have a vortex sheet on its surface. Our construction relies on a perturbative approach around an explicit spherical solution, given by Hill’s vortex enclosed by a spherical vortex sheet. The construction is sensitive to the Weber numbers describing the flow. At critical Weber numbers, we perform a bifurcation analysis utilizing the Crandall–Rabinowitz theorem in Sobolev spaces on the 2-sphere. Away from these critical numbers, our construction relies on the implicit function theorem. Our results imply that the model containing surface tension is richer than the ordinary one-phase Euler equations, in the sense that for the latter, Hill’s spherical vortex is unique (modulo translations) among all axisymmetric simply connected uniform vortices of a given circulation.
Seis, Christian | Professur für Angewandte Mathematik (Prof. Seis) |