Exponential mixing by random cellular flows [Exponential mixing by random cellular flows]Open Access

Navarro-Fernández, Víctor; Seis, Christian

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We study a passive scalar equation on the two-dimensional torus, where the advecting velocity field is given by a cellular flow with a randomly moving center. We prove that the passive scalar undergoes mixing at a deterministic exponential rate, independent of any underlying diffusivity. Furthermore, we show that the velocity field enhances dissipation and we establish sharp decay rates that, for large times, are deterministic and remain uniform in the diffusivity constant. Our approach is purely Eulerian and relies on a suitable modification of Villani's hypocoercivity method.

Details zur Publikation

FachzeitschriftJournal of Functional Analysis (J. Funct. Anal.)
Jahrgang / Bandnr. / Volume290
Ausgabe / Heftnr. / Issue2
StatusVeröffentlicht
Veröffentlichungsjahr2026
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1016/j.jfa.2025.111227
Link zum Volltexthttps://www.sciencedirect.com/science/article/pii/S0022123625004094?via%3Dihub
StichwörterTransport equations; Fluid dynamics; Mixing; Hypocoercivity

Autor*innen der Universität Münster

Seis, Christian
Professur für Angewandte Mathematik (Prof. Seis)