Lifted Forward Planning in Relational Factored Markov Decision Processes with Concurrent Actions

Marwitz, Florian; Braun, Tanya; Möller, Ralf; Gehrke, Marcel

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Decision making is a central problem in AI that can be formalized using a Markov Decision Process. A problem is that, with increasing numbers of (indistinguishable) objects, the state space grows exponentially. To compute policies, the state space has to be enumerated. Even more possibilities have to be enumerated if the size of the action space depends on the size of the state space, especially if we allow concurrent actions. To tackle the exponential blow-up in the action and state space, we present a first-order representation to store the spaces in polynomial instead of exponential size in the number of objects and introduce Foreplan, a relational forward planner, which uses this representation to efficiently compute policies for numerous indistinguishable objects and actions. Additionally, we introduce an even faster approximate version of Foreplan. Moreover, Foreplan identifies how many objects an agent should act on to achieve a certain task given restrictions. Further, we provide a theoretical analysis and an empirical evaluation of Foreplan, demonstrating a speedup of at least four orders of magnitude.

Details zur Publikation

BuchtitelAAMAS-26 Proceedings of the 25th International Conference on Autonomous Agents and Multi-Agent Systems
Statusakzeptiert / in Druck (unveröffentlicht)
Veröffentlichungsjahr2026
Sprache, in der die Publikation verfasst istEnglisch
KonferenzAAMAS-26 25th International Conference on Autonomous Agents and Multi-Agent Systems, Paphos, Zypern
Stichwörterdecision making; planning; concurrent actions; lifting

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)