Approximate Lifted Model Construction

Luttermann, Malte; Speller, Jan; Gehrke, Marcel; Braun, Tanya; Möller, Ralf; Hartwig, Mattis

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Probabilistic relational models such as parametric factor graphs enable efficient (lifted) inference by exploiting the indistinguishability of objects. In lifted inference, a representative of indistinguishable objects is used for computations. To obtain a relational (i.e., lifted) representation, the Advanced Colour Passing (ACP) algorithm is the state of the art. The ACP algorithm, however, requires underlying distributions, encoded as potential-based factorisations, to exactly match to identify and exploit indistinguishabilities. Hence, ACP is unsuitable for practical applications where potentials learned from data inevitably deviate even if associated objects are indistinguishable. To mitigate this problem, we introduce the ε-Advanced Colour Passing (ε-ACP) algorithm, which allows for a deviation of potentials depending on a hyperparameter ε. ε-ACP efficiently uncovers and exploits indistinguishabilities that are not exact. We prove that the approximation error induced by ε-ACP is strictly bounded and our experiments show that the approximation error is close to zero in practice.

Details zur Publikation

BuchtitelIJCAI-25 Proceedings of the 34th International Joint Conference on Artificial Intelligence
Statusakzeptiert / in Druck (unveröffentlicht)
Veröffentlichungsjahr2025
Sprache, in der die Publikation verfasst istEnglisch
KonferenzIJCAI-25 34th International Joint Conference on Artificial Intelligence, Montreal, Kanada
Stichwörterlifting; probabilistic relational model; factor graph; colour passing; approximate learning

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)
Speller, Jan
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)