Lifting Partially Observable Stochastic Games

Karabulut, Nazlı Nur; Braun, Tanya

Forschungsartikel in Sammelband (Konferenz) | Peer reviewed

Zusammenfassung

Partially observable stochastic games (POSGs) are a Markovian formalism used to model a set of agents acting in a stochastic environment, in which each agent has its own reward function. As is common with multi-agent decision making problems, the model and runtime complexity is exponential in the number of agents, which can be prohibitively large. Lifting is a technique that treats groups of indistinguishable instances through representatives if possible, yielding tractable inference in the number of objects in a model. This paper applies lifting to the agent set in POSGs, yielding so-called isomorphic POSGs that have a model complexity no longer dependent on the number of agents, and presents a lifted solution approach that exploits this lifted agent set for space and runtime gains.

Details zur Publikation

Herausgeber*innenDestercke, Sébastien; Martinez, Maria Vanina; Sanfilippo, Giuseppe
BuchtitelSUM-24 Proceedings of the 16th International Conference on Scalable Uncertainty Management
Seitenbereich201-216
VerlagSpringer Nature
ErscheinungsortCham
StatusVeröffentlicht
Veröffentlichungsjahr2024
Sprache, in der die Publikation verfasst istEnglisch
KonferenzSUM-24 16th International Conference on Scalable Uncertainty Management, Palermo, Italien
DOI10.1007/978-3-031-76235-2_16
Link zum Volltexthttps://www.uni-muenster.de/imperia/md/content/informatik/research/papers/sum24.pdf
Stichwörtermulti-agent decision making; lifting; isomorphism; indistinguishability

Autor*innen der Universität Münster

Braun, Tanya
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)
Karabulut, Nazli Nur
Juniorprofessur für Praktische Informatik - Moderne Aspekte der Verarbeitung von Daten / Data Science (Prof. Braun)