msiFlow: automated workflows for reproducible and scalable multimodal mass spectrometry imaging and microscopy data analysis.

Spangenberg P; Bessler S; Widera L; Bottek J; Richter M; Thiebes S; Siemes D; Krauß SD; Migas LG; Kasarla SS; Phapale P; Kleesiek J; Führer D; Moeller LC; Heuer H; Van de Plas R; Gunzer M; Soehnlein O; Soltwisch J; Shevchuk O; Dreisewerd K; Engel DR

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Multimodal imaging by matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI MSI) and microscopy holds potential for understanding pathological mechanisms by mapping molecular signatures from the tissue microenvironment to specific cell populations. However, existing software solutions for MALDI MSI data analysis are incomplete, require programming skills and contain laborious manual steps, hindering broadly applicable, reproducible, and high-throughput analysis to generate impactful biological discoveries. Here, we present msiFlow, an accessible open-source, platform-independent and vendor-neutral software for end-to-end, high-throughput, transparent and reproducible analysis of multimodal imaging data. msiFlow integrates all necessary steps from raw data import to analytical visualisation along with state-of-the-art and self-developed algorithms into automated workflows. Using msiFlow, we unravel the molecular heterogeneity of leukocytes in infected tissues by spatial regulation of ether-linked phospholipids containing arachidonic acid. We anticipate that msiFlow will facilitate the broad applicability of MSI in multimodal imaging to uncover context-dependent cellular regulations in disease states.

Details zur Publikation

FachzeitschriftNature Communications
Jahrgang / Bandnr. / Volume16
Ausgabe / Heftnr. / Issue1
Seitenbereich1065-1065
StatusVeröffentlicht
Veröffentlichungsjahr2025 (27.01.2025)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1038/s41467-024-55306-7
StichwörterSoftware; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Workflow; Microscopy; Algorithms; Animals; Humans; Multimodal Imaging; Mice; Data Analysis; Reproducibility of Results; Leukocytes; Image Processing, Computer-Assisted; Infection

Autor*innen der Universität Münster

Beßler, Sebastian
Institut für Hygiene
Dreisewerd, Klaus
Institut für Hygiene
Richter, Mathis
Institut für Experimentelle Pathologie
Söhnlein, Oliver
Institut für Experimentelle Pathologie
Soltwisch, Jens
Institut für Hygiene