Uniform Sample Distribution in Scatterplots via Sector-based Transformation

Rave, Hennes; Molchanov, Vladimir; Linsen, Lars

Forschungsartikel in Online-Sammlung (Konferenz) | Peer reviewed

Zusammenfassung

A high number of samples often leads to occlusion in scatter-plots, which hinders data perception and analysis. De-cluttering approaches based on spatial transformation reduce visual clutter by remapping samples using the entire available scatterplot domain. Such regularized scatterplots may still be used for data analysis tasks, if the spatial transformation is smooth and preserves the original neighborhood relations of samples. Recently, Rave et al. proposed an efficient regularization method based on integral images. We propose a generalization of their regularization scheme using sector-based transformations with the aim of increasing sample uniformity of the resulting scatterplot. We document the improvement of our approach using various uniformity measures.

Details zur Publikation

Name des RepositoriumsIEEE Xplore
StatusVeröffentlicht
Veröffentlichungsjahr2024 (02.12.2024)
Sprache, in der die Publikation verfasst istEnglisch
KonferenzIEEE Visualization and Visual Analytics (VIS), St. Pete Beach, Florida, Vereinigte Staaten
DOI10.1109/VIS55277.2024.00039
Link zum Volltexthttps://ieeexplore.ieee.org/abstract/document/10771106
StichwörterScatterplot de-cluttering; spatial transformation

Autor*innen der Universität Münster

Linsen, Lars
Professur für Praktische Informatik (Prof. Linsen)
Molchanov, Vladimir
Professur für Praktische Informatik (Prof. Linsen)
Rave, Hennes
Professur für Praktische Informatik (Prof. Linsen)