The Shape of the Emerging Condensate in Effective Models of Condensation

Betz, Volker; Dereich, Steffen; Moerters, Peter

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We consider effective models of condensation where the condensation occurs as time t goes to infinity. We provide natural conditions under which the buildup of the condensate occurs on a spatial scale of 1/t and has the universal form of a Gamma density. The exponential parameter of this density is determined only by the equation and the total mass of the condensate, while the power law parameter may in addition depend on the decay properties of the initial condition near the condensation point. We apply our results to some examples, including simple models of Bose–Einstein condensation.

Details zur Publikation

FachzeitschriftAnnales Henri Poincare
Jahrgang / Bandnr. / Volume19
Ausgabe / Heftnr. / Issue6
Seitenbereich1869-1889
StatusVeröffentlicht
Veröffentlichungsjahr2018
DOI10.1007/s00023-018-0673-7
StichwörterEmergence; kinetic equation; quantum particles; Bose-Einstein; House-of-cards model; selection; mutation; singular solution; non-linear partial differential equation; non-equilibrium phenomena

Autor*innen der Universität Münster

Dereich, Steffen
Professur für Wahrscheinlichkeitstheorie (Prof. Dereich)