De-cluttering Scatterplots with Integral Images

Rave, Hennes; Molchanov, Vladimir; Linsen, Lars

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Scatterplots provide a visual representation of bivariate data (or 2D embeddings of multivariate data) that allows for effective analyses of data dependencies, clusters, trends, and outliers. Unfortunately, classical scatterplots suffer from scalability issues, since growing data sizes eventually lead to overplotting and visual clutter on a screen with a fixed resolution, which hinders the data analysis process. We propose an algorithm that compensates for irregular sample distributions by a smooth transformation of the scatterplot's visual domain. Our algorithm evaluates the scatterplot's density distribution to compute a regularization mapping based on integral images of the rasterized density function. The mapping preserves the samples' neighborhood relations. Few regularization iterations suffice to achieve a nearly uniform sample distribution that efficiently uses the available screen space. We further propose approaches to visually convey the transformation that was applied to the scatterplot and compare them in a user study. We present a novel parallel algorithm for fast GPU-based integral-image computation, which allows for integrating our de-cluttering approach into interactive visual data analysis systems.

Details zur Publikation

FachzeitschriftIEEE Transactions on Visualization and Computer Graphics (TVCG)
Jahrgang / Bandnr. / Volume0
Ausgabe / Heftnr. / Issue0
Seitenbereich1-13
StatusVeröffentlicht
Veröffentlichungsjahr2024 (25.03.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1109/TVCG.2024.3381453
Link zum Volltexthttps://ieeexplore.ieee.org/document/10478640
StichwörterScatterplot; Integral Image; Regularization

Autor*innen der Universität Münster

Linsen, Lars
Professur für Praktische Informatik (Prof. Linsen)
Molchanov, Vladimir
Professur für Praktische Informatik (Prof. Linsen)
Rave, Hennes
Professur für Praktische Informatik (Prof. Linsen)