Gander, Martin J; Ohlberger, Mario; Rave, Stephan
Forschungsartikel in Online-Sammlung | Preprint | Peer reviewedThe Parareal algorithm was invented in 2001 in order to parallelize the solution of evolution problems in the time direction. It is based on parallel fine time propagators called F and sequential coarse time propagators called G, which alternatingly solve the evolution problem and iteratively converge to the fine solution. The coarse propagator G is a very important component of Parareal, as one sees in the convergence analyses. We present here for the first time a Parareal algorithm without coarse propagator, and explain why this can work very well for parabolic problems. We give a new convergence proof for coarse propagators approximating in space, in contrast to the more classical coarse propagators which are approximations in time, and our proof also applies in the absence of the coarse propagator. We illustrate our theoretical results with numerical experiments, and also explain why this approach can not work for hyperbolic problems.
Ohlberger, Mario | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) Center for Nonlinear Science (CeNoS) Center for Multiscale Theory and Computation (CMTC) |
Rave, Stephan | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) |