A Parareal algorithm without Coarse Propagator?

Gander, Martin J; Ohlberger, Mario; Rave, Stephan

Forschungsartikel in Online-Sammlung | Preprint | Peer reviewed

Zusammenfassung

The Parareal algorithm was invented in 2001 in order to parallelize the solution of evolution problems in the time direction. It is based on parallel fine time propagators called F and sequential coarse time propagators called G, which alternatingly solve the evolution problem and iteratively converge to the fine solution. The coarse propagator G is a very important component of Parareal, as one sees in the convergence analyses. We present here for the first time a Parareal algorithm without coarse propagator, and explain why this can work very well for parabolic problems. We give a new convergence proof for coarse propagators approximating in space, in contrast to the more classical coarse propagators which are approximations in time, and our proof also applies in the absence of the coarse propagator. We illustrate our theoretical results with numerical experiments, and also explain why this approach can not work for hyperbolic problems.

Details zur Publikation

Name des RepositoriumsarXiv
Artikelnummer2409.02673
Statuseingereicht / in Begutachtung
Veröffentlichungsjahr2024 (04.09.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.48550/arXiv.2409.02673
Link zum Volltexthttps://doi.org/10.48550/arXiv.2409.02673
StichwörterParareal, parallel time integrator

Autor*innen der Universität Münster

Ohlberger, Mario
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Center for Nonlinear Science (CeNoS)
Center for Multiscale Theory and Computation (CMTC)
Rave, Stephan
Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)