Fine-Tuning SSL-Model to Enhance Detection of Cilioretinal Arteries on Colored Fundus Images.

Gobalakrishnan W; Zimmermann J; Storck M; Yildirim K; Brücher VC; Eter N; Varghese J

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Cilioretinal arteries are a common congenital anomaly of retinal blood supply. This paper presents a deep learning-based approach for the automated detection of a CRA from color fundus images. Leveraging the Vision Transformer architecture, a pre-trained model from RETFound was fine-tuned to transfer knowledge from a broader dataset to our specific task. An initial dataset of 85 was expanded to 170 images through data augmentation using self-supervised learning-driven techniques. To address the imbalance in the dataset and prevent overfitting, Focal Loss and Early Stopping were implemented. The model's performance was evaluated using a 70-30 split of the dataset for training and validation. The results showcase the potential of ophthalmic foundation models in enhancing detection of CRAs and reducing the effort required for labeling by retinal experts, as promising results could be achieved with only a small amount of training data through fine-tuning.

Details zur Publikation

FachzeitschriftStudies in Health Technology and Informatics (Stud Health Technol Inform)
Jahrgang / Bandnr. / Volume316
Seitenbereich919-923
StatusVeröffentlicht
Veröffentlichungsjahr2024 (22.08.2024)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3233/SHTI240561
StichwörterHumans; Fundus Oculi; Deep Learning; Ciliary Arteries; Retinal Artery; Image Interpretation, Computer-Assisted

Autor*innen der Universität Münster

Brücher, Viktoria Constanze
Klinik für Augenheilkunde
Eter, Nicole
Klinik für Augenheilkunde
Zimmermann, Julian Alexander
Klinik für Augenheilkunde