Development of a Framework for Continual Learning in Industrial Robotics

Trinh M.; Moon J.; Grundel L.; Hankemeier V.; Storms S.; Brecher C.

Forschungsartikel in Online-Sammlung (Konferenz) | Peer reviewed

Zusammenfassung

Continual learning (CL) is a machine learning (ML) paradigm for learning continually from non-stationary data streams while simultaneously transferring and protecting past knowledge. Therefore, CL avoids catastrophic forgetting, a common problem that arises when training ML-models on new data. This paper presents a CL framework for data-driven learning of the dynamics model of a 6-degree-of-freedom serial industrial robot. This model can be used for model-based control algorithms, without the need for extensive identification of robot specific parameters such as mass inertia, and can additionally model complex effects such as friction. Furthermore, using CL, it can adapt to changes of the robot e.g., due to wear or new tasks. With the help of CL, the ML-based dynamics model is continually fed new data and improves over the operating period of the robot.

Details zur Publikation

Name des RepositoriumsIEEE Xplore
Artikelnummer9921432
StatusVeröffentlicht
Veröffentlichungsjahr2022
Sprache, in der die Publikation verfasst istEnglisch
Konferenz27th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2022, Stuttgart, Deutschland
DOI10.1109/ETFA52439.2022.9921432
Link zum Volltexthttps://api.elsevier.com/content/abstract/scopus_id/85141401546
Stichwörtercatastrophic forgetting; continual learning; dynamics modeling; industrial robots; learning-based control

Autor*innen der Universität Münster

Hankemeier, Victoria
Professur für Praktische Informatik (Prof. Schilling)