Nonparametric estimation of effect heterogeneity in rare events meta-analysis: bivariate, discrete mixture model

Böhning, D.; Martin, S.; Sangnawakij, P.; Jansen, K.; Böhning, W.; Holling, H.

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

Meta-analysis provides an integrated analysis and summary of the effects observed in k independent studies. The conventional analysis proceeds by first calculating a study-specific effect estimate, and then provides further analysis on the basis of the available k independent effect estimates associated with their uncertainty measures. Here we consider a setting where counts of events are available from k independent studies for a treatment and a control group. We suggest to model this situation with a study-specific Poisson regression model, and allow the study-specific parameters of the Poisson model to arise from a nonparametric mixture model. This approach then allows the estimation of the heterogeneity variance of the effect measure of interest in a nonparametric manner. A case study is used to illustrate the methodology throughout the paper.

Details zur Publikation

FachzeitschriftLobachevskii Journal of Mathematics
Jahrgang / Bandnr. / Volume42
Seitenbereich308-317
StatusVeröffentlicht
Veröffentlichungsjahr2021
DOI10.1134/S1995080221020074
Link zum Volltexthttps://doi.org/10.1134/S1995080221020074
Stichwörterheterogeneity variance, count data analysis, nonparametric mixture models, meta-analysis, rare event

Autor*innen der Universität Münster

Jansen, Katrin
Professur für Statistik und Forschungsmethoden in der Psychologie (Prof. Nestler)