Strong convergence of vorticities in the 2D viscosity limit on a bounded domainOpen Access

Seis, Christian; Wiedemann, Emil; Woźnicki, Jakub

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

In the vanishing viscosity limit from the Navier–Stokes to Euler equations on domains with boundaries, a main difficulty comes from the mismatch of boundary conditions and, consequently, the possible formation of a boundary layer. Within a purely interior framework, Constantin and Vicol showed that the two-dimensional viscosity limit is justified for any arbitrary but finite time under the assumption that on each compactly contained subset of the domain, the enstrophies are bounded uniformly along the viscosity sequence. Within this framework, we upgrade to local strong convergence of the vorticities under a similar assumption on the p-enstrophies, p > 2. The key novel idea is the analysis of the evolution of the weak convergence defect.

Details zur Publikation

FachzeitschriftJournal of Nonlinear Science (J. Nonlinear Sci.)
Jahrgang / Bandnr. / Volume36
Ausgabe / Heftnr. / Issue22
StatusVeröffentlicht
Veröffentlichungsjahr2026
Sprache, in der die Publikation verfasst istEnglisch
DOI10.1007/s00332-026-10239-x
Link zum Volltexthttps://link.springer.com/article/10.1007/s00332-026-10239-x
StichwörterEuler equations; Navier–Stokes equations; vanishing viscosity; transport equation

Autor*innen der Universität Münster

Seis, Christian
Professur für Angewandte Mathematik (Prof. Seis)