Radiomics of Tumor Heterogeneity in 18F-FDG-PET-CT for Predicting Response to Immune Checkpoint Inhibition in Therapy-Naïve Patients with Advanced Non-Small-Cell Lung Cancer.

Ventura D; Schindler P; Masthoff M; Görlich D; Dittmann M; Heindel W; Schäfers M; Lenz G; Wardelmann E; Mohr M; Kies P; Bleckmann A; Roll W; Evers G

Forschungsartikel (Zeitschrift) | Peer reviewed

Zusammenfassung

We aimed to evaluate the predictive and prognostic value of baseline 18F-FDG-PET-CT (PET-CT) radiomic features (RFs) for immune checkpoint-inhibitor (CKI)-based first-line therapy in advanced non-small-cell lung cancer (NSCLC) patients. In this retrospective study 44 patients were included. Patients were treated with either CKI-monotherapy or combined CKI-based immunotherapy-chemotherapy as first-line treatment. Treatment response was assessed by the Response Evaluation Criteria in Solid Tumors (RECIST). After a median follow-up of 6.4 months patients were stratified into "responder" (n = 33) and "non-responder" (n = 11). RFs were extracted from baseline PET and CT data after segmenting PET-positive tumor volume of all lesions. A Radiomics-based model was developed based on a Radiomics signature consisting of reliable RFs that allow classification of response and overall progression using multivariate logistic regression. These RF were additionally tested for their prognostic value in all patients by applying a model-derived threshold. Two independent PET-based RFs differentiated well between responders and non-responders. For predicting response, the area under the curve (AUC) was 0.69 for "PET-Skewness" and 0.75 predicting overall progression for "PET-Median". In terms of progression-free survival analysis, patients with a lower value of PET-Skewness (threshold < 0.2014; hazard ratio (HR) 0.17, 95% CI 0.06-0.46; p < 0.001) and higher value of PET-Median (threshold > 0.5233; HR 0.23, 95% CI 0.11-0.49; p < 0.001) had a significantly lower probability of disease progression or death. Our Radiomics-based model might be able to predict response in advanced NSCLC patients treated with CKI-based first-line therapy.

Details zur Publikation

FachzeitschriftCancers
Jahrgang / Bandnr. / Volume15
Ausgabe / Heftnr. / Issue8
Artikelnummer2297
StatusVeröffentlicht
Veröffentlichungsjahr2023 (14.04.2023)
Sprache, in der die Publikation verfasst istEnglisch
DOI10.3390/cancers15082297
Link zum Volltexthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10136892/
StichwörterFDG-PET-CT; NSCLC; PD-1; PD-L1; TPS; artificial intelligence; immune checkpoint inhibition; pembrolizumab; radiomics.

Autor*innen der Universität Münster

Bleckmann, Annalen
Medizinische Klinik A (Med A)
Westdeutsches Tumorzentrum (WTZ) Netzwerkpartner Münster
Dittmann, Matthias
Klinik für Nuklearmedizin
Evers, Georg
Medizinische Klinik A (Med A)
Görlich, Dennis
Institut für Biometrie und Klinische Forschung (IBKF)
Heindel, Walter Leonhard
Klinik für Radiologie
Kies, Peter
Klinik für Nuklearmedizin
Lenz, Georg
Medizinische Klinik A (Med A)
Masthoff, Max
Klinik für Radiologie
Mohr, Michael
Medizinische Klinik A (Med A)
Roll, Wolfgang
European Institute of Molecular Imaging (EIMI)
Klinik für Nuklearmedizin
Schäfers, Michael
Klinik für Nuklearmedizin
Schindler, Philipp
Klinik für Radiologie
Ventura, David Michele
Klinik für Nuklearmedizin
Wardelmann, Eva Erika
Gerhard-Domagk-Institut für Pathologie