Reeb-Dynamik und Holomorphe Kurven

Grunddaten zu diesem Projekt

Art des ProjektesGefördertes Einzelprojekt
Laufzeit an der Universität Münster01.04.2014 - 31.03.2016

Beschreibung

Energiehyperflächen Hamiltonscher Dynamischer Systeme zerlegen symplektische Mannigfaltigkeiten in natürlicherweise in symplektische Kobordismen. Wie H. Hofer 1993 zeigte, kann man punktierte holomorphe Kurven in solchen Kobordismen benutzen, um periodische Lösungen der Hamiltonschen Gleichungen zu finden. Andererseits lässt aber auch die Orbitstruktur Rückschlüsse auf die Geometrie der Kobordismen bzw. deren Kontakttyp-Ränder zu. Die Untersuchung solcher Beziehungen ist Teil der symplektischen Feldtheorie und Gegenstand unseres Projektes. Mit Hilfe der Theorie der Polyfaltigkeiten sollen die Existenzresultate geschlossener Reeb-Bahnen auf eine größtmögliche Klasse von Kontaktmannigfaltigkeiten erweitert werden, die als konkaver Rand geeigneter symplektischer Kobordismen auftreten. Dies reduziert die Existenzfrage auf eher geometrische Fragestellungen. So soll untersucht werden, wie sich Überdrehtheit oder die Giroux-Torsion begrifflich ausdehnen lassen, um Beispiele solcher Kobordismen aufzuspüren. In natürlicher Weise kann man in diesem Zusammenhang eine Kapazität durch Messen der kleinsten Periode definieren, die wir in Zusammenhang mit der Hofer-Zehnder-Kapazität stellen werden. Dies dehnt dann unsere Existenzresultate auf stabile Hamiltonsche Strukturen aus. (Quelle: gepris.dfg.de)

Stichwörterperiodische Reeb-Bahnen; Holomorphe Kurven; Symplektische Kobordismen; Kontakttopologie
FörderkennzeichenZE 992/1-1
Mittelgeber / Förderformat
  • DFG - Sachbeihilfe/Einzelförderung

Projektleitung der Universität Münster

Zehmisch, Kai
Professur für Differentialgeometrie/Geometrische Analysis (Prof. Zehmisch)

Antragsteller*innen der Universität Münster

Zehmisch, Kai
Professur für Differentialgeometrie/Geometrische Analysis (Prof. Zehmisch)

Projektbeteiligte Organisationen außerhalb der Universität Münster

  • Universität zu Köln (UzK)Deutschland