Ultra-layered perception with brain-inspired information processing for vehicle collision avoidance (ULTRACEPT)

Grunddaten zu diesem Projekt

Art des ProjektesEU-Projekt koordiniert außerhalb der Universität Münster
Laufzeit an der Universität Münster01.12.2018 - 30.09.2024

Beschreibung

Autonomous vehicles, although in its early stage, have demonstrated huge potential in shaping future life styles to many of us. However, to be accepted by ordinary users, autonomous vehicles have a critical issue to solve – this is trustworthy collision detection. No one likes an autonomous car that is doomed to a collision accident once every few years or months. In the real world, collision does happen at every second - more than 1.3 million people are killed by road accidents every single year. The current approaches for vehicle collision detection such as vehicle to vehicle communication, radar, laser based Lidar and GPS are far from acceptable in terms of reliability, cost, energy consumption and size. For example, radar is too sensitive to metallic material, Lidar is too expensive and it does not work well on absorbing/reflective surfaces, GPS based methods are difficult in cities with high buildings, vehicle to vehicle communication cannot detect pedestrians or any objects unconnected, segmentation based vision methods are too computing power thirsty to be miniaturized, and normal vision sensors cannot cope with fog, rain and dim environment at night. To save people’s lives and to make autonomous vehicles safer to serve human society, a new type of trustworthy, robust, low cost, and low energy consumption vehicle collision detection and avoidance systems are badly needed.This consortium proposes an innovative solution with brain-inspired multiple layered and multiple modalities information processing for trustworthy vehicle collision detection. It takes the advantages of low cost spatial-temporal and parallel computing capacity of bio-inspired visual neural systems and multiple modalities data inputs in extracting potential collision cues at complex weather and lighting conditions.

StichwörterInformatik; autonomes Fahren
Förderkennzeichen778062
Mittelgeber / Förderformat
  • EU H2020 - Marie Skłodowska-Curie Actions - Research and Innovation Staff Exchange (MSCA RISE)

Projektleitung der Universität Münster

Jiang, Xiaoyi
Professur für Praktische Informatik (Prof. Jiang)

Antragsteller*innen der Universität Münster

Jiang, Xiaoyi
Professur für Praktische Informatik (Prof. Jiang)

Projektbeteiligte Organisationen außerhalb der Universität Münster

  • Chinese Academy of Sciences (CAS)China
  • Universität HamburgDeutschland
  • Tsinghua-UniversitätChina
  • UNIVERSITY OF LINCOLNVereinigtes Königreich
  • University of GuizhouChina
  • Universiti Putra Malaysia (UPM)Malaysia
  • Tokyo University of Agriculture and TechnologyJapan
  • Universidad de Buenos AiresArgentinien
  • Huazhong University of Science and TechnologyChina
  • Northwestern Polytechnical UniversityChina
  • Xi'an Jiaotong UniversityChina
  • Lingnan University CollegeChina
  • Newcastle University (UNCL)Vereinigtes Königreich
  • VisoMorphic Technology LtdVereinigtes Königreich
  • Dino Robotics GmbHDeutschland

Koordinierende Organisationen außerhalb der Universität Münster

  • UNIVERSITY OF LINCOLNVereinigtes Königreich