In multi-scale problems, geometry and dynamics on the micro-scale influence structures on coarser scales. In this research unit we will investigate and analyse such structural interdependence based on topological, geometrical or dynamical properties of the underlying processes. We are interested in transport-dominated processes, such as in the problem of how efficient a fluid can be stirred to enhance mixing, and in the related analytical questions. A major concern will be the role of molecular diffusion and its interplay with the stirring process. High Péclet number flow in porous media with reaction at the surface of the porous material will be studied. Here, the flowinduces pore-scale fluctuations that lead to macroscopic enhanced diffusion and reaction kinetics. We also aim at understanding advection-dominated homogenisation problems in random regimes. We aim at classifying micro-scale geometry or topology with respect to the macroscopic behaviour of processes considered therein. Examples are meta material modelling and the analysis of processes in biological material. Motivated by network formation and fracture mechanics in random media, we will analyse the effective behaviour of curve and free-discontinuity energies with stochastic inhomogeneity. Furthermore, we are interested in adaptive algorithms that can balance the various design parameters arising in multi-scale methods. The analysis of such algorithms will be the key towards an optimal distribution of computational resources for multi-scale problems. Finally, we will study multi-scale energy landscapes and analyse asymptotic behaviour of hierarchical patterns occurring in variational models for transportation networks and related optimal transport problems. In particular, we will treat questions of self-similarity, cost distribution, and locality of the fine-scale pattern. We will establish new multilevel stochastic approximation algorithms with the aim of numerical optimisation in high dimensions.
Dereich, Steffen | Professur für Wahrscheinlichkeitstheorie (Prof. Dereich) |
Engwer, Christian | Professur für Anwendungen von partiellen Differentialgleichungen (Prof. Engwer) |
Mukherjee, Chiranjib | Professur für Wahrscheinlichkeitstheorie (Prof. Mukherjee) |
Ohlberger, Mario | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) |
Schedensack, Mira | Juniorprofessur für Angewandte Mathematik (Prof. Schedensack) |
Schlichting, André | Professur für Angewandte Mathematik (Prof. Schlichting) |
Seis, Christian | Professur für Angewandte Mathematik (Prof. Seis) |
Wirth, Benedikt | Professur für Biomedical Computing/Modelling (Prof. Wirth) |
Zeppieri, Caterina Ida | Professur für Analysis und Modellierung (Prof. Zeppieri) |
Dereich, Steffen | Professur für Wahrscheinlichkeitstheorie (Prof. Dereich) |
Engwer, Christian | Professur für Anwendungen von partiellen Differentialgleichungen (Prof. Engwer) |
Mukherjee, Chiranjib | Professur für Wahrscheinlichkeitstheorie (Prof. Mukherjee) |
Ohlberger, Mario | Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger) |
Schedensack, Mira | Juniorprofessur für Angewandte Mathematik (Prof. Schedensack) |
Seis, Christian | Professur für Angewandte Mathematik (Prof. Seis) |
Wirth, Benedikt | Professur für Biomedical Computing/Modelling (Prof. Wirth) |
Zeppieri, Caterina Ida | Professur für Analysis und Modellierung (Prof. Zeppieri) |